
Vibroengineering PROCEDIA

Editor in chief

K. Ragulskis Lithuanian Academy of Sciences, (Lithuania) k.ragulskis@jve.lt, ragulskis.jve@gmail.com

Managing Editor

M. Ragulskis Kaunas University of Technology, minvydas.ragulskis@ktu.lt JVE International, (Lithuania) m.ragulskis@iye.lt

Editorial Board

H. Adeli The Ohio State University, (USA) adeli.1@osu.edu
V. Babitsky Loughborough University, (UK) v.i.babitsky@lboro.ac.uk

R. Bansevičius Kaunas University of Technology, (Lithuania) ramutis.bansevicius@ktu.lt

M. Bayat Tarbiat Modares University, (Iran) mbayat14@yahoo.com

I. Blekhman Mekhanobr – Tekhnika Corporation, (Russia) iliya.i.blekhman@gmail.com
K. Bousson University of Beira Interior (Portugal) bousson@ubi.nt

K. Bousson University of Beira Interior, (Portugal) bousson@ubi.pt
 A. Bubulis Kaunas University of Technology, (Lithuania) algimantas.bubulis@ktu.lt

R. Burdzik Silesian University of Technology, (Poland) rafal.burdzik@polsl.pl
M. S. Cao Hohai University, (China) cmszhy@hhu.edu.cn
Lu Chen Beihang University, (China) luchen@buaa.edu.cn

F. Chernousko Institute for Problems in Mechanics, (Russia) chern@ipmnet.ru

Z. Dabrowski Warsaw University of Technology, (Poland)
 Y. Davydov Institute of Machine Building Mechanics, (Russia)
 Linstitut@bk.ru

Y. Davydov Institute of Machine Building Mechanics, (Russia) Institut@bk.ru

J. Duhovnik University of Liubliana, (Slovenia) ioze.duhovnik@lecad.uni

J. Duhovnik University of Ljubljana, (Slovenia) joze.duhovnik@lecad.uni-lj.si
S. Ersoy Marmara University, (Turkey) sersoy@marmara.edu.tr

A. Fedaravičius Kaunas University of Technology, (Lithuania) algimantas.fedaravicius@ktu.lt

R. Ganiev Blagonravov Mechanical Engineering Research Institute, rganiev@nwmtc.ac.ru

(Russia)

W. H. Hsieh National Formosa University, (Taiwan) allen@nfu.edu.tw
V. Kaminskas Vytautas Magnus University, (Lithuania) v.kaminskas@if.vdu.lt

V. Klyuev Association Spektr - Group, (Russia) v.klyuev@spektr.ru

G. Kulvietis Vilnius Gediminas Technical University, (Lithuania) genadijus.kulvietis@vgtu.lt

V. Lyalin Izhevsk State Technical University, (Russia) velyalin@mail.ru
R. Martonka Technical University of Liberec, (Czech Republic) rudolf.martonka@tul.cz
R. Maskeliūnas Vilnius Gediminas Technical University, (Lithuania) rimas.maskeliunas@vgtu.lt

L. E. Muñoz Universidad de los Andes, (Colombia) lui-muno@uniandes.edu.co

V. Ostaševičius Kaunas University of Technology, (Lithuania) vytautas.ostasevicius@ktu.lt
A. Palevičius Kaunas University of Technology, (Lithuania) arvydas.palevicius@ktu.lt

G. Panovko Blagonravov Mechanical Engineering Research Institute, gpanovko@yandex.ru

(Russia)

L. Qiu Nanjing University of Aeronautics and Astronautics, (China) lei.qiu@nuaa.edu.cn

S. Rakheja Concordia University, (Canada) subhash.rakheja@concordia.ca

V. Royzman Khmelnitskiy National University, (Ukraine) iftomm@ukr.net

M. A. F. Sanjuan University Rey Juan Carlos, (Spain) miguel.sanjuan@urjc.es

P. M. Singru BITS Pilani, (India) pmsingru@goa.bits-pilani.ac.in

A. El Sinawi The Petroleum Institute, (United Arab Emirates) aelsinawi@pi.ac.ae

The Fettoleum Histitute, (Officed Arab Emirates)

E. Shahmatov Samara State Aerospace University, (Russia) shakhm@ssau.ru

G. Song University of Houston, (USA) gsong@uh.edu

S. Toyama Tokyo A&T University, (Japan) toyama@cc.tuat.ac.jp
K. Uchino The Pennsylvania State University, (USA) kenjiuchino@psu.edu

A. Vakhguelt Nazarbayev University, (Kazakhstan) anatoli.vakhguelt@nu.edu.kz

A. Valiulis Vilnius Gediminas Technical University, (Lithuania) algirdas.valiulis@vgtu.lt

P. Vasiljev Lithuanian University of Educational Sciences, (Lithuania) vasiljev@vpu.lt

V. Veikutis Lithuanian University of Health Sciences, (Lithuania) vincentas.veikutis@lsmuni.lt

J. Viba Riga Technical University, (Latvia) janis.viba@rtu.lv

V. Volkovas Kaunas University of Technology, (Lithuania) vitalijus.volkovas@ktu.lt

J. Wallaschek Leibniz University Hannover, (Germany) wallaschek@ids.uni-hannover.de

Xiao-Jun Yang China University of Mining and Technology, (China) dyangxiaojun@163.com
Mao Yuxin Zhejiang Gongshang University, (China) maoyuxin@zjgsu.edu.cn
M. Zakrzhevsky Riga Technical University, (Latvia) mzakr@latnet.lv

VP Vibroengineering PROCEDIA

Vibroengineering PROCEDIA Volume 8 contains papers presented at the 22-nd International Conference on VIBROENGINEERING held in Moscow, Russia, 4-7 October, 2016. The main theme of this Conference is "Dynamics of Strongly Nonlinear Systems".

Aims and Scope

Original papers containing developments in vibroengineering of dynamical systems (macro-, micro-, nano- mechanical, mechatronic, biomechanics and etc. systems).

The following subjects are principal topics: vibration and wave processes; vibration and wave technologies; nonlinear vibrations; vibroshock systems; generation of vibrations and waves; vibrostabilization; transformation of motion by vibrations and waves; dynamics of intelligent mechanical systems; vibration control, identification, diagnostics and monitoring.

All published papers are peer reviewed.

General Requirements

The authors must ensure that the paper presents an original unpublished work which is not under consideration for publication elsewhere.

The following structure of the manuscript is recommended: abstract, keywords, nomenclature, introduction, main text, results, conclusions and references. Manuscript should be single-spaced, one column 162×240 mm format, using Microsoft Word 2007 or higher. Margins: top 10 mm, bottom 10 mm, left 15 mm, right 10 mm, header 4 mm, footer 7 mm.

Font: Times New Roman. Title of the article 16 pt Bold, authors name 10 pt Bold, title of the institution 9 pt Regular, equations and text 10 pt Regular, indexes 5 pt Regular, all symbols Italic, vectors Bold, numbers Regular. Paragraph first line indentation 5 mm. Equations are to be written with Microsoft Office 2007 or higher Equation Tool.

Heading of the table starts with table number 9 pt Bold as "**Table 1.**", then further text 9 pt Regular. Table itself 9 pt Regular.

Figure caption starts with figure number 9 pt Bold as "Fig. 1.", then further text 9 pt Regular. Figure itself must be a single or grouped graphical item.

Tables and figures are placed after the paragraph in which they are first referenced.

List of references: reference number and authors 9 pt Bold, further information 9 pt Regular:

- [1] Pain H. J. The Physics of Vibrations and Waves. Chichester: John Wiley and Sons, 2005.
- [2] Juška V., Svilainis L., Dumbrava V. Analysis of piezomotor driver for laser beam deflection. Journal of Vibroengineering, Vol. 11, Issue 1, 2009, p. 17-26.

The authors are responsible for the correctness of the English language.

Vibroengineering PROCEDIA is referred in:

SCOPUS: ELSEVIER Bibliographic Database.

COMPENDEX: ELSEVIER Bibliographic Database.

EBSCO: Academic Search Complete;

Computers & Applied Sciences Complete;

Central & Eastern European Academic Source;

Current Abstracts;

TOC Premier.

GALE Cengage Learning: Academic OneFile Custom Periodical.

INSPEC: OCLC. The Database for Physics, Electronics and Computing.

GOOGLE SCHOLAR: http://scholar.google.com

Internet: http://www.jveconferences.com; http://www.jve.lt

E-mail: m.ragulskis@jve.lt; conferences@jve.lt Address: Gėlių ratas 15A, LT-50282, Kaunas, Lithuania

Publisher: JVE International Ltd.

VP Vibroengineering PROCEDIA

OCTOBER 2016. VOLUME 8, PAGES (1-537). ISSN 2345-0533

Contents

MECHANICAL VIBRATIONS AND APPLICATIONS

THE KINEMATIC ANALYSIS OF FLAT LEVER MECHANISMS WITH APPLICATION OF

THE KINEMATIC ANALISIS OF PLAT LEVER MECHANISMS WITH ATTLICATION OF	
VECTOR CALCULATION	
ALGAZY ZHAUYT, GULNAR MAMATOVA, KUANYSH ALIPOV,	
Aizhan Sakenova, Raushan Abdirova	
THE USE OF FUZZY CONTROL METHODS FOR EVALUATION OF COMPLEX SYSTEMS ON	6
THE EXAMPLE OF MARITIME FLEET EQUIPMENT	
Anatoliy Nyrkov, Anton Zhilenkov, Sergei Sokolov, Sergei Chernyi	
INCREASING EFFICIENCY AND ENVIRONMENTAL SAFETY OF COOLING SYSTEMS IN A	11
FLOATING NUCLEAR POWER PLANT	
Valeriy Yenivatov, Konstantin Fedorovsky	
THE STUDY OF THE PROCESS OF THE DEVELOPMENT OF MARINE ROBOTICS	17
ANTON ZHILENKOV	
STUDY OF THERMAL STONECUTTING TOOLS	22
YERLIK NURYMOV, AMINA BUKAYEVA, ALGAZY ZHAUYT, VITALY POVETKIN,	
YERLAN ASKAROV	
VIBRATION ANALYSIS OF ADDING CONTAMINANTS PARTICLES AND CARBON	28
NANOTUBES TO LITHIUM GREASE OF BALL BEARING	
A. Nabhan	
NONLINEAR SYSTEM IDENTIFICATION WITH THE USE OF DESCRIBING FUNCTIONS – A	33
CASE STUDY	
ZHONGGE ZHAO, CHUANRI LI, KJELL AHLIN, HUAN DU	
SIMULATION OF CHIP-FORMATION BY A SINGLE GRAIN OF PYRAMID SHAPE	39
S. A. VORONOV, WEIDONG MA	
INVESTIGATION OF LONGITUDINAL OSCILLATIONS WARP IN THE PROCESS OF	45
CHANGING PARAMETERS SYSTEM	
ALEXANDRA IVANOVSKAYA, VLADIMIR POPOV	
ESTIMATION OF DAMPING CAPACITY OF RUBBER VIBRATION ISOLATORS UNDER	50
HARMONIC EXCITATION	
SVETI ANA POLLIKOSHKO	

MIODEL OF A VERTICAL ROTOR WITH A BALL-TYPE AUTOMATIC BALANCER	3/
Guntis Strautmanis, Mareks Mezitis, Valentina Strautmane	
OSCILLATIONS OF A RIGID BLOCK ON SUPPORTED BASE	63
Munitsyn Alexander, Munitsyna Maria	
MINIMIZING THE VIBRATION AMPLITUDE OF ROTATING MACHINERY RUNNING	68
THROUGH THE RESONANCE AREA BY APPLICATION OF	
MAGNETORHEOLOGICAL SQUEEZE FILM DAMPERS	
JAROSLAV ZAPOMĚL, PETR FERFECKI, JAN KOZÁNEK	_
STUDY OF THE MOTION OF A MECHANICAL SYSTEM DUE TO THE OSCILLATORY	74
MOTION OF THE SIDE LINKS	
SERGEY JATSUN, LYUDMILA VOROCHAEVA, SERGEY EFIMOV	0.0
STUDY OF THE OSCILLATION OF A WING MOUNTED ON AN ELASTIC SUSPENSION SERGEY JATSUN, COURAGE SABAU, SERGEY EFIMOV	80
THE STUDY OF OSCILLATIONS OF A ROTOR AT THE COLLISION WITH A STATOR BASED	85
ON THE QUASIDIAGONALISTIC METHOD	
VLADIMIR RADIN, YURY SAMOGIN, VICTOR CHIRKOV	
CONTACT PROBLEMS IN ROTOR SYSTEMS	90
LIUDMILA BANAKH	
VIBRATION OF STRING LATTICE	97
VLADIMIR ASTASHEV, NIKOLAY ANDRIANOV, VITALY KRUPENIN	
DEVELOPMENT AND RESEARCH OF VIBROMIXING REACTOR WITH ROTATIONALLY	102
RECIPROCATING MOTION OF IMPELLER	
ALEXANDER PRIKHODKO, ANATOLY SMELYAGIN	
NUMERICAL SIMULATION OF THE COIL SPRING AND INVESTIGATION THE IMPACT OF	108
TENSION AND COMPRESSION TO THE SPRING NATURAL FREQUENCIES	
F. D. SOROKIN, ZHOU SU	
DEVELOPMENT OF SPHERICAL ULTRASONIC MOTOR FOR SPACE. EVALUATIONS OF	114
DURABILITY UNDER LOW TEMPERATURE ENVIRONMENT AND TEMPERATURE	
CYCLE The Covery High Navigna, Charles Toylor	
TARO OOHASHI, UICHI NISHIZAWA, SHIGEKI TOYAMA	120
DYNAMICS RAMMERS WITH TWO PAIRS OF SHOCK GENERATORS	120
L. A. IGUMNOV, V. S. METRIKIN, I. V. NIKIFOROVA	125
EXPERIMENTAL STUDY OF ULTRASONIC RELAXATION OF RESIDUAL STRESSES IN THE	125
ELASTIC PLATES	
ALBERT KOROLEV, ANDREI BALAEV, TIMUR BALTAEV, BORIS IZNAIROV MODELLING OF THE PROCESS OF VIBRO-MECHANICAL CORRECTION IN	130
LONG-LENGTH PARTS	130
ALBERT KOROLEV, ANDREI BALAEV, SERGEY SAVRAN, OLEG DAVIDENKO	
ON DYNAMICS OF A RIGID BODY MOVING ON A HORIZONTAL PLANE BY MEANS OF	135
MOTION OF AN INTERNAL PARTICLE	13.
BORIS BARDIN, ALEKSANDR PANEV	
PIPE THREAD WEAR-RESISTANT ULTRASONIC HARDENING UNIT	142
SERGEY EVSYUKOV, SERGEY NEBOGOV, IGOR FEDOTOV	1 72
ON THE ANALYSIS OF FORCED OSCILLATIONS OF SYSTEMS WITH TWO RANDOM	147
SOURCES OF PARAMETRIC EFFECTS	1.,
Boris Roev, Aleksey Vinokur	
ANALYTICAL DETERMINATION OF THE STABILITY MOVEMENT BOUNDARIES OF THE	152
JEFFCOTT ROTOR WITH MULTI-BODIES AUTOBALANCER	
ALEXANDER GORBENKO	
INFLUENCE OF THE RESONANCE CHARACTERISTICS OF FREE-YAW SMALL WIND	158
TURBINES ON THE PERFORMANCE	
NADEZDA A AFANASYEVA VITALI V DUDNIK VLADIMIR I. GAPONOV	

AN OPTIMUM DESIGN OF A DOUBLE PENDULUM IN AUTOPARAMETRIC RESONANCE	163
FOR ENERGY HARVESTING APPLICATIONS	
TAIZOON CHUNAWALA, MARYAM GHANDCHI-TEHRANI, JIZE YAN	
THE ANALYSIS OF THE VENTRICLE ASSIST DEVICE CONTROLLED ROTOR DYNAMICS	169
Elena Ovsyannikova, Alexander M. Gouskov	
SIMULATION OF CONTROL SYSTEM FOR RESONANT VIBRATING MACHINES WITH TWO	174
UNBALANCED EXCITERS	
GRIGORY PANOVKO, ALEXANDER SHOKHIN, SERGEY EREMEYKIN	
ANALYTICAL APPROACH OF TURNING THIN-WALLED TUBULAR PARTS. STABILITY	179
ANALYSIS OF REGENERATIVE CHATTER	
ARTEM GERASIMENKO, MIKHAIL GUSKOV, ALEXANDER GOUSKOV,	
PHILIPPE LORONG, GRIGORY PANOVKO	
ON THE CHOICE OF DYNAMIC REGIMES FOR TWO-MASS VIBRATING MACHINE	185
ALEXANDER E. SHOKHIN, GRIGORY YA. PANOVKO,	
KONSTANTIN B. SALAMANDRA	
FAULT DIAGNOSIS BASED ON VIBRATION SIGNAL ANALYSIS	
THE INCREASE OF SHIP GAS-DIESEL ENGINES' RELIABILITY BY MEANS OF	191
SPECIALIZED SOFTWARE AND HARDWARE SYSTEMS USE	
ALEXANDER BORDYUG	
VIBRATION GENERATION AND CONTROL	
MODEL OF EVALUATION OF THE EFFICIENCY OF THE SHIP'S DIESEL GENERATOR	196
CONTROL SYSTEM	
ALEKSANDR ZHELEZNIAK	
SOLVING OPTIMIZATION PROBLEMS OF OPTIMAL CONTROL OF OPERATIONAL	201
PARAMETERS OF OIL RESERVOIR	
K. A. SIDELNIKOV, A. M. GUBANOV, V. A. TENENEV, M. A. SHARONOV	
DEVELOPING SYSTEM OF AUTOMATIC CONTROL RESONANT MODE OF A VIBRATING	208
MACHINE	
KONSTANTIN V. KRESTNIKOVSKIY, GRIGORY YA. PANOVKO,	
ALEXANDER E. SHOKHIN	
INVESTIGATION OF INFLUENCE OF HIGH-FREQUENCY VIBRATIONS ON THE STABILITY	213
OF STATIONARY ROTATIONS OF LAGRANGE'S TOP	
MIKHAIL BELICHENKO, OLGA KHOLOSTOVA	
THE APPROACH TO BUILDING THE ALGORITHM FOR CONTROLLING ROTOR MOTION IN	219
A HYBRID MECHATRONIC BEARING	
ROMAN POLYAKOV, MAXIM BONDARENKO, DENIS SHUTIN, LEONID SAVIN	
INVESTIGATION OF THE MECHATRONIC SYSTEM OSCILLATORY MOTION WITH	225
DISCRETE FEEDBACK PD-CONTROL	
Sergey Jatsun, Andrei Malchikov, Andrei Yatsun	
CEICMIC ENCINEEDING	
SEISMIC ENGINEERING	
SEISMIC RESISTANCE OF HORIZONTAL UNDERGROUND OPENINGS IN ANISOTROPIC	231
ROCKS	
JANAT MUSAYEV, ALGAZY ZHAUYT, MANAP SAGATBEK, NURALI MATIKHAN,	
YERBOL KALIYEV, BATYR NAURUSHEV	
THE PERFORMANCE OF SEMI-RIGID STEEL FRAME STRUCTURE IN PROGRESSIVE	237
COLLAPSE	
HENGCHAO CHEN	

USE OF FINITE ELEMENT MODEL STRUCTURES IN RECONSTRUCTION OF BUILDINGS, LOCATED IN BUILT-UP AREA WITH COMPLEX HYDROGEOLOGICAL AND LANDSCAPE TERRITORIAL STATE	243
N. S. SIVTSEV, N. V. MITYUKOV, O. V. MALINA, P. A. USHAKOV	
NUMERICAL REALIZATION OF SPATIAL MODEL OF SYSTEM BUILDING-BASE-GROUND	249
V. E. Lyalin, N. V. Mityukov, O. V. Malina, Y. O. Mikhailov	
MODAL ANALYSIS	
METHOD FOR DIRECT IDENTIFICATION OF OPTIMUM MODAL VALUES OF DYNAMICAL SYSTEMS	256
A. I. NISTYUK, M. V. DANILOV, N. S. SIVTSEV, S. D. KUGULTINOV	
VIBRATION IN TRANSPORTATION ENGINEERING	
THE INFLUENCE OF OPERATIONAL FACTORS ON THE CONTACT-FATIGUE EFFECT OF	263
COUPLE OF WHEEL-RAIL FRICTION IN CURVES OF SMALL RADIUS	
Janat Musayev, Algazy Zhauyt, Yerlik Nurymov, Gulnar Mamatova,	
YERZHAN ADILKHANOV, ALMAS ALIZHAN, TIMUR CHIGAMBAEV	
THE INTERACTION OF THE FREIGHT CAR AND WAY TAKING INTO ACCOUNT	269
DEFORMATION OF ASSEMBLED RAILS AND SLEEPERS	
ZHASTALAP ABILKAIYR, JANAT MUSAYEV, TALGAT KAIYM, AZAMAT ALPEISOV,	
Assylkhan Alimbetov, Algazy Zhauyt	
FATIGUE DAMAGE VIRTUAL SIMULATION RESEARCH ON HEAVY VEHICLE	275
Sun Li, Chen Nan	
FLOW INDUCED STRUCTURAL VIBRATIONS	
IMPROVING A PIPELINE HYBRID DYNAMIC MODEL USING 2DOF PID	280
YONGXIANG WANG, A. H. EL-SINAWI, SAMI AINANE	
TIDAL STREAM GENERATORS, CURRENT STATE AND POTENTIAL OPPORTUNITIES FOR	285
CONDITION MONITORING	
Vassilios Kappatos, George Georgoulas, Nicolas P. Avdelidis,	
KONSTANTINOS SALONITIS	
MATHEMATICAL MODELING OF HYDROELASTIC WALLS OSCILLATIONS OF THE	294
CHANNEL ON WINKLER FOUNDATION UNDER VIBRATIONS	
LEV I. MOGILEVICH, VICTOR S. POPOV, ANNA A. POPOVA,	
ALEFTINA V. CHRISTOFOROVA	
MATHEMATICAL MODEL OF ELASTIC RIBBED SHELL DYNAMICS INTERACTION WITH	300
VISCOUS LIQUID UNDER VIBRATION	
DMITRY V. KONDRATOV, ANNA V. KALININA, LEV I. MOGILEVICH,	
Anna A. Popova, Yulia N. Kondratova	207
STABILITY AND POST CRITICAL BEHAVIOR OF SUPPORTED PANEL IN SUPERSONIC GAS	306
JET V. D. DADDI A. V. SHGIHIGODEV, V. N. SHGIHIGODEV	
V. P. RADIN, A. V. SHCHUGOREV, V. N. SHCHUGOREV INVESTIGATIONS OF ROTATING BLADE FOR ENERGY EXTRACTION FROM FLUID FLOW	312
JANIS VIBA, VITALY BERESNEVICH, STANISLAVS NOSKOVS, MARTINS IRBE	
DYNAMICS OF ASSEMBLED STRUCTURES OF ROTOR SYSTEMS OF AVIATION GAS TURBINE ENGINES OF TYPE TWO-ROTOR	316
ANATOLY A. PYKHALOV, MIKHAIL A. DUDAEV, MIKHAIL YE. KOLOTNIKOV,	
PAUL V. MAKAROV	

HYDRODYNAMIC EFFECTS INFLUENCE ON LATERAL VIBRATIONS OF RIGID	322
SYMMETRIC ROTOR WITH FLUID-FILM BEARINGS	
LEONID SAVIN, SERGEY MAJOROV, ALEXEY KORNAEV	
OSCILLATIONS IN BIOMEDICAL ENGINEERING	
MECHANISM EVALUATION OF AGRICULTURAL POWER ASSIST SUIT UNDER	328
DEVELOPMENT	
TOSHITAKE ARAIE, TOMOZUMI IKEDA, UICHI NISHIZAWA, AKIRA KAKIMOTO,	
SHIGEKI TOYAMA	
FINITE-ELEMENT STUDY OF VIBRATION EFFECT TO FRACTURE HEALING OF A HUMAN	334
TIBIA	
LEONID MASLOV, JEAN-BAPTISTE ETHEVE, NIKOLAY SABANEEV	
SYNERGETIC APPROACH TO CONTROL OF AXIAL LEFT VENTRICULAR ASSIST DEVICE	340
ROTOR SUPPORTED BY MAGNETIC BEARINGS	
Yulia Bogdanova, Alexandre Guskov, Mikhail Guskov	
EFFECT OF GAIT ON THE ENERGY CONSUMPTION OF WALKING ROBOTS	346
Eugene S. Briskin, Yaroslav V. Kalinin	
CHAOS, NONLINEAR DYNAMICS AND APPLICATIONS	
NONLINEAR DYNAMIC EFFECT IN SYNTHETIC FIBRES FROM SEMI- AND RIGID CHAIN	351
POLYMERS	
ALLA A. ROMANOVA, PAVEL P. RYMKEVICH	
THE DYNAMICS OF A NONAUTONOMOUS OSCILLATOR WITH FRICTION MEMORY	356
L. A. IGUMNOV, V. S. METRIKIN, M. V. ZAYTZEV	
DYNAMICS OF GAS TURBINE ENGINES ROTORS TAKING INTO ACCOUNT NON-LINEAR	361
EFFECTS	
O. REPETCKII, I. RYZHIKOV, TIEN QUYET NGUYEN	
TESTING OF PRODUCTS ON VIBRATION STRENGTH AND DURABILITY IN THE REGIME	366
OF CHAOTIC OSCILLATIONS	
MIKHAIL ZAKRZHEVSKY, VITALY BERESNEVICH, VLADISLAV YEVSTIGNEJEV	
NONLINEAR DAMPING IN VIBRATION OF CFRP PLATES	372
Olga Kazakova, Igor Smolin, Iosif Bezmozgiy	
PROBLEMS OF PRECISE VIBROMECHANICS AND VIBROENGINEERING	377
Darius Pauliukaitis, Edmundas Kibirkštis, Kazimieras Ragulskis	
NONLINEAR OSCILLATIONS OF FLEXIBLE PENDULUM SYSTEMS UNDER ACTION OF	386
PERIODICAL EXCITATION	
O. V. BARMINA, M. F. ZEYTMAN	
OSCILLATIONS IN ELECTRICAL ENGINEERING	
MATHEMATICAL MODEL OF ELECTROMECHANICAL SYSTEM WITH VARIABLE	392
DISSIPATIVITY	U) _
ALEXSANDR BAYKOV, BORIS GORDEEV	
INFLUENCE OF ELECTROMAGNETIC STIFFNESS ON COUPLED MICRO VIBRATIONS	397
GENERATED BY SOLAR ARRAY DRIVE ASSEMBLY	0,7
Mariyam Sattar, Cheng Wei, Awais Jalali	
STUDY OF THE MOTION OF AN ELECTROMECHANICAL SYSTEM IN THE PRESENCE OF	403
AN ELASTIC LINK AND DELAY IN THE NEGATIVE FEEDBACK LOOP OF A SERVO	100
DRIVE	
SERGEY JATSUN, PETER BEZMEN, ANDREY YATSUN	
ZERGET VITTOON, I ETEK BEEINEN, I II DICHT	

VIBRATION CHARACTERISTICS OF MINIATURE STIRLING ELECTRIC COOLERS V. KONDRATJEV, V. GOSTILO, A. OWENS, O. JAKOVLEVS, J. VIBA	409
MEASUREMENTS IN ENGINEERING	r
RESEARCH ON INTELLIGENT BORE PEEK AND MEASUREMENT SYSTEM BASED ON MACHINE VISION TECHNOLOGY FOR GUN BARREL XINJIE SHAO, SHIJIAN ZHU, LIJUN CAO	414
RESIDUAL STRESSES DISTRIBUTION IN TI-6AL-4V TITANIUM ALLOYS DURING LASER	422
	422
SHOCK PROCESSING	
GERONTIY SAKHVADZE, ALEXANDER SHOKHIN, OMAR KIKVIDZE	426
EXPERIMENTAL STUDY OF SPRING BACK OF DIFFERENT SHEET ALLOYS BY PRE-LOAD LASER BENDING	428
SAIRA SAFDAR, GHAZALA SAFDAR, ALI RAZA, CHENGBAO JIANG RESIDUAL STRESS AND MICROHARDNESS INCREASING INDUCED BY TWO-SIDED LASER	434
SHOCK PROCESSING	434
GERONTIY SAKHVADZE, ALEXANDER SHOKHIN, OMAR KIKVIDZE	
THEORETICAL PREMISES OF A VIBRO-INERTIAL METHOD OF VISCOSITY MEASUREMENT	440
ELENA KORNAEVA, ALEXEY KORNAEV, LEONID SAVIN, ALEX GALICHEV, ALEX BABIN	
MATHEMATICAL MODELS IN ENGINEERING	
CROSS-LINGUAL PART-OF-SPEECH TAGGING USING WORD EMBEDDING	446
WEI YUAN, LEI WANG, XIAO-FEI SUN, WEN-WEN PAN, JIA-GUO LV	4=0
THE FUZZY MODEL OF SHIPS COLLISION RISK RATING IN A HEAVY TRAFFIC ZONE	453
VIKTOR A. SEDOV, NELLY A. SEDOVA, SERGEY V. GLUSHKOV	450
THE ASPECTS OF ROLL-FORMING PROCESS DYNAMICS	459
LEONID KONDRATENKO, VIKTOR TEREKHOV, LYUBOV MIRONOV	166
SOLUTIONS OF SEEPAGE EQUATIONS IN CURVILINEAR COORDINATES	466
K. A. SIDELNIKOV, A. M. GUBANOV, V. E. LYALIN, M. A. SHARONOV	470
DIACOPTICAL ANALYSIS ALGORITHMS OF TOPOLOGICAL SITE MODELS OF INFORMATION BACKUP AND STORAGE CARRIER	470
A. I. Nistyuk, V. E. Lyalin, M. V. Danilov, Y. O. Mikhailov	
NONLINEAR CRUSHING DYNAMICS IN TWO-DEGREE OF FREEDOM DISINTEGRATOR	477
BASED ON THE BENNETT'S LINKAGE	7//
Munir Yarullin, Fanil Khabibullin, Ilnur Isyanov	
INFLUENCE OF THE GAP AND THE FRICTION ON TRAJECTORY REPRODUCTION	483
ACCURACY IN A MULTIAXIS MACHINE WITH CNC	700
O. V. Pas', N. A. Serkov	
A THERMOMECHANICAL MODEL OF SELF-OSCILLATIONS ACTUATION DURING METAL	489
MACHINING	102
GEORGE KORENDYASEV	
GENERALIZED GAP FUNCTION IN THE DYNAMIC INTERACTION PROBLEMS OF	495
ELEMENTS OF VIBRATIONAL TECHNOLOGICAL MACHINES WITH "NOT	.,.
HOLDING" TIES	
Andrey V. Eliseev, Anatoly I. Artyunin, Sergey V. Eliseev	
THE EFFECT OF DRY FRICTION FORCES ON THE PROCESS OF DIELECTRIC WAFER	501
GRINDING	
L. A. IGUMNOV, V. S. METRIKIN, A. V. GREZINA, A. G. PANASENKO	
THE FUZZY MODEL OF THE EMERGENCY LEVEL ASSESSMENT AT SEA	506
NELLY A. SEDOVA, VIKTOR A. SEDOV, SERGEY V. GLUSHKOV	

CONTENTS

DYNAMICS OF TRIPOD DRIVE WITH ELASTIC SELF-SUSTAINING TRANSMISSION	512
I. A. Nesmiyanov, V. V. Zhoga, N. S. Vorobieva, V. V. Dyashkin-Titov	
EQUILIBRIUM FORMS BRANCHING OF A NANOLAYERS SYSTEM	517
A. V. Lukin, I. A. Popov, D. Yu. Skubov, L. V. Shtukin	
ABOUT FORMATION OF THE STABLE MODES OF THE MOVEMENT OF MULTILINK	522
MECHANICAL SYSTEMS	
A. S. GOROBTZOV, E. N. RYZHOV, A. S. POLYANINA	
RESEARCH MODEL ROBOT-HEXAPOD UNDER STATIC AND DYNAMIC LOADS	527
L. A. Rybak, Y. A. Getman, I. P. Shipilov	
NONLINEAR FILTERING AND IDENTIFICATION ALGORITHMS FOR	531
CORRELATION-EXTREMUM DYNAMIC SYSTEMS WITH RANDOM STRUCTURE	
TATIANA KOLOSOVSKAYA	

Vibration analysis of adding contaminants particles and carbon nanotubes to lithium grease of ball bearing

A. Nabhan

Production Engineering and Mechanical Design Department, Faculty of Engineering, Minia University, Minia, Egypt

E-mail: a.nabhan@mu.edu.eg
(Received 13 July 2016; accepted 18 July 2016)

Abstract. This paper examines vibration behavior of ball bearings dispersed by solid as a function of contamination of lubricant. Experimental tests were performed using SKF 6004 deep groove ball bearing, dispersed with different contaminants particles. Silica sand with different particle sizes, copper (Cu micro particles), poly methyl methacrylate (PMMA), low-density polyethylene (LDPE), and polyamide (PA), all at five concentration levels were used to disperse the lubricant. The contaminants concentration as well as the carbon nanotubes (CNT_s) concentration is varied as 1, 2, 3, 4, and 5 wt. %. It was found that as the contaminants particles size and concentration increased, the corresponding acceleration values also increased up to certain limit. Furthermore, the vibration amplitudes decrease due to the increase of the copper concentration. The vibration amplitude was improved due to increase of concentration of carbon nanotubes CNT_s.

Keywords: ball bearing, vibration, carbon nanotubes, contaminants.

1. Introduction

Antifriction bearings are the most critical parts in rotating machinery. Main function of these bearings depends on the smooth and quiet running of the roller elements. The behavior of the roller elements have a significant effect on bearing performance. Solid contaminants are denting of the bearing raceways and roller elements. Solid contaminants may be the cause of bearing failure. Therefore, the dynamic behavior of antifriction bearing may be monitored using vibration measurements and wear debris analysis, [1, 2].

Influence of contaminants in the grease of the rolling bearing was investigated using the acoustic emission, [3]. It was found that, small size contaminant particles generated a higher acoustic emission pulse count level than large size particles. The behavior of lubricant contamination by solid Particles on the vibration signals of roller bearings was investigated. The experimental tests were performed with applied radial Load was 10 % of the bearing nominal load. The roller bearings NU205 was used, which lubricated with mineral oil of different viscosity grades, [4, 5]. Quartz powder in three concentration levels and different particle sizes was used to contaminate the oil, [6, 7]. The dolomite powder in three concentration levels and different particle sizes was used to contaminate the grease with deep groove ball bearings, [8]. Different materials such as Silica, metal-burr, dolomite-powder, iron-ore, and sawdust, all at three concentration levels and different particle sizes were used to contaminate the lubricant, [9, 10].

 Al_2O_3 nanoparticles as lubricating oil additives were investigated, and it is showed that the friction coefficient was decreased by 40-50 % in comparison with the solution without Al_2O_3 particles, [11, 12]. Modified SiO_2 nanoparticles as lubricating oil additives had better tribological properties in terms of load-carrying capacity, anti-wear and friction reduction, [13, 14]. Al_2O_3/SiO_2 composite nanoparticles were expected to be more interesting when they were used as lubricating oil additives [15-18]. Modified Al_2O_3/SiO_2 composite nanoparticles as lubricating oil additives were investigated by four-ball and thrust-ring tests in terms of vibration and coefficient of friction. It is found that their anti-wear and anti-friction performances are better than those of pure Al_2O_3 or SiO_2 nanoparticles, [19]. The vibration characteristics of ball bearing supplied with nano-copper oxide (CuO) mixed lubricant was investigated. The results show a reduce of 41 % vibration amplitude while using 0.2 % (W/V) CuO nanoparticles in outer case defected compared to pure lubricant, [20].

The objective of this work is to investigate vibration behavior when ball bearings are dispersed by solid contaminates. Experimental tests were performed in SKF 6004 deep groove ball bearing, contaminated with different contaminants particles. The effect of carbon nanotubes CNT_s as lubricant additives were investigated. The contaminants concentration as well as the carbon nanotubes CNT_s concentration is varied as 1, 2, 3, 4, and 5 wt. % of the solid lubricant.

2. Materials and methods

The bearing type that has be used in this study is a single row deep groove ball bearing SKF 6004. Lithium grease without additive was used as a basic lubricant. Generally different materials such as silica sand of (0-150 μ m) "A", (150-300 μ m) "B", (300-600 μ m) "C", and (600-1400 μ m) "D". particle sizes, copper (Cu micro particles), poly methyl meth acrylate (PMMA), low density polyethylene (LDPE), and polyamide (PA), all at five concentration levels were used to disperse the grease. The morphology of the used contaminants particles is shown in Fig. 1.

Carbon nanotubes CNT_s were of the size range outside diameter: >50 nm, inside diameter: 5-15 nm, and length: 5-20 um. Carbon nanotubes CNT_s was added to the lubricant. The contaminants concentration as well as the carbon nanotubes CNT_s concentration is varied as 1, 2, 3, 4, and 5 wt. % of the lithium grease.

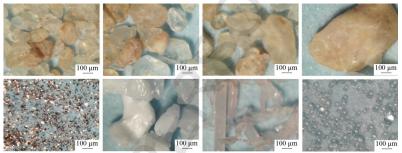


Fig. 1. The morphology of the contaminants particles

An experimental setup is employed in this work with the purpose of obtaining the vibration response related to different testing conditions of the bearing element contacts. Fig. 2 schematically shows the tested ball bearing in the rig. An optical encoder is used for the speed measurement. An elastic claw coupling is utilized to damp out the high-frequency vibration generated by the motor. Two ball bearings are fitted into the solid housings. Accelerometers (IMI Sensors- 603C01) are mounted on the housing of the tested bearing to measure the vibration signals along two directions. Vibration signatures are analyzed in terms acceleration values at particular defect frequencies and also in terms of overall root mean square (RMS) values.

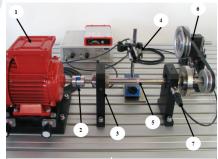


Fig. 2. Schematic representation of the test ring: 1 – drive unit, 2 – Elastic claw coupling, 3 – bearing block, 4 – shaft with reflective mark, 5 – reference sensor, 6 – belt drive, 7 – acceleration sensor

Vibration was determined through the processing and analysis of bearing radial vibration data, obtained from each of the lubrication conditions, during 1.5 hr. of test run for temperature stabilization and under several bearing shaft speeds. The applied radial load was 20 % of the bearing basic load. Through root mean square (RMS) analysis of the vibration signals, it was possible to identify specific frequency bands modulated by the change in contaminants concentration and the Carbon nanotubes CNTs concentration

3. Results and discussion

3.1. Analysis of contaminant particles adding

The experimental results were carried out in two groups. The first group is depending on adding different particles size of the silica with different concentrations. The added silica has particles size of (0-150 μ m) "A", (150-300 μ m) "B", (300-600 μ m) "C", and (600-1400 μ m) "D", as shown in Fig. 1. Fig. 3 illustrates the variation of RMS amplitude of the acceleration for ball bearing with concentration of added silica. It shows that when the additive concentration of particles is increased, the RMS amplitude increases. The variation of RMS values may be due to the interaction of silica particles on the contact area between the balls and the races of the bearing, as shown in Fig. 4.

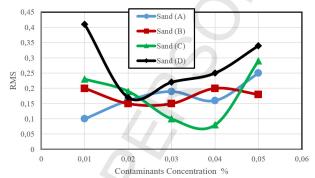


Fig. 3. RMS acceleration amplitude versus contaminants concentration for grope A

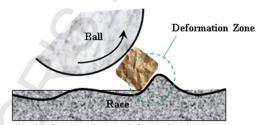


Fig. 4. A sketch of contaminants deformation in contact area of bearing

The lubricant specimens after the test were analyzed. Images of cutting particles found in the lubricant samples from silica "A" were shown in Fig. 5. It was observed that the silica "A", particles size of (0-150 µm), has greater effect on the increase of the wear rate. It can be concluded that the RMS give high results with increase of the concentration of silica through disturbing and breaking the grease film inside the bearing. Moreover, the wear rate increased with the decrease of silica particles size. The second group is tested with adding copper (Cu micro particles), poly methyl methacrylate (PMMA), low-density polyethylene (LDPE), and polyamide (PA) to solid lubricant. The variation of RMS amplitude of the acceleration for ball bearing with concentration of added silica are shown in Fig. 6. It is observed that the increase of the RMS amplitude due to increase of the concentration of the polymeric additives. Also, it is noticed that poly methyl

methacrylate (PMMA) gives higher values of RMS acceleration amplitude. Furthermore, the RMS amplitude values decreased when the concentration of the copper particles increased.

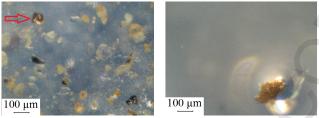


Fig. 5. The morphology of lubricant specimen of silica A

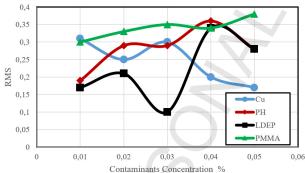


Fig. 6. RMS acceleration amplitude versus contaminants concentration for grope B

3.2. Analysis of carbon nanotubes CNTs adding

Fig. 6 illustrates the variation of RMS amplitude of the acceleration for ball bearing with time. In the experiment, the RMS amplitudes were measured every second. The RMS amplitude averaged from every 15 min. original data were displayed in Fig. 7. It is important to notice that the RMS amplitudes of lubricant with carbon nanotubes CNT_s are all smaller than that of pure lubricating grease. It can be concluded that the vibration performance was improved due to increase of concentration of carbon nanotubes CNT_s .

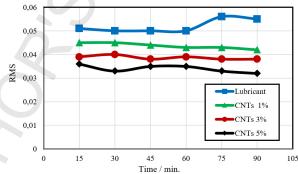


Fig. 7. Experimental variation of the acceleration RMS with time

4. Conclusions

In the present work, the effect of solid contaminants in grease on vibration response of ball bearing was studied. For bearing with contaminant free grease, all the frequencies are at minimum level. As the contaminants particles size and concentration are increased, the corresponding acceleration values also increase up to certain limit. Furthermore, the vibration amplitudes decrease due to increase of the copper concentration.

With smaller particle size and varying concentration level of silica, the wear rate gives the highest results. This may be attributed to the fact that particles may come in direct contact with rotating elements, break the grease film separating the contacting elements of the bearing.

Due to carbon nanotubes CNTs, which was 0.5 wt. %, introduced in a lithium grease, the vibration amplitudes of bearings is reduced by 32 %.

References

- [1] Roylance B. J., Hunt T. M. Wear Debris Analysis. Coxmoor Publishing Company, Oxford, UK, 1999.
- [2] Braron T. Engineering Condition Mointoring. Addison Wesley Longman, 1996.
- [3] Miettinen Juha, Andersson Peter Acoustic emission of rolling bearings lubricated with contaminated grease. Tribology International, Vol. 33, 2000, p. 777-787.
- [4] Serrato Ricardo, Maru Marcia, Padovese Linilson Effect of lubricant oil viscosity and contamination on the Mechanical signature of roller bearing. 12th International Conference on Sound and Vibration, Vol. 87, 2005, p. 514-567.
- [5] Serrato R., Maru M. M., Padovese L. R. Effect of lubricant viscosity grade on mechanical vibration of roller bearings. Tribology International, Vol. 40, 2007, p. 1270-1275.
- [6] Maru M. M., Castillo R. S., Padovese L. R. Study of solid contamination in ball Bearings through vibration and wear analyses. Tribology International, Vol. 40, 2006, p. 433-44.
- [7] Maru Marcia Marie, Castillo Ricardo Serrato, Padovese Linilson Rodrigues Effect of the presence of solid contamination and the resulting wear on the mechanical signature of ball bearings. 18th International Congress of Mechanical Engineering, Ouro Preto, MG, 2005.
- [8] Mahajan Onkar L., Utpat Abhay A. Study of effect of solid contaminants in the lubricant on ball bearings vibration. International Journal of Instrumentation, Control and Automation, Vol. 1, 2012.
- [9] More Yogesharao Y., Deshmukh A. P. Study of effect of solid contaminants in grease on performance of ball bearing by vibrational analysis. International Journal of Innovations in Engineering Research and Technology, Vol. 2, Issue 5, 2015.
- [10] Godase Sachin P., Nehe S. S., Anatharama B. Analysis of effect of solid contaminants in lubrication on vibration response of ball bearing. International Engineering Research Journal, Vol. 1, Issue 7, 2015, p. 545-549.
- [11] Radice S., Mischler S. Effect of electrochemical and mechanical parameters on the lubrication behaviour of Al₂O₃ nanoparticles in aqueous suspensions. Wear, Vol. 261, 2006, p. 1032-1041.
- [12] Shi G., Zhang M. Q., Rong M. Z., Bernd W., Klaus F. Sliding wear behavior of epoxy containing nano Al₂O₃ particles with different pretreatments. Wear, Vol. 256, 2004, p. 1072-1081.
- [13] Li X. H., Cao Z., Zhang Z. J., Dang H. X. Surface-modification in situ of nano SiO₂ and its structure and tribological properties. Applied Surface Science, Vol. 252, 2006, p. 7856-7861.
- [14] Peng D. X., Kang Y., Hwang R. M., Shyr S. S., Chang Y. P. Tribological properties of diamond and SiO₂ nanoparticles added in paraffin. Tribology International, Vol. 42, 2009, p. 911-917.
- [15] Ma S. Y., Zheng S. H., Ding H. Y., Li W. Anti-wear and reduce-friction ability of ZrO₂/SiO₂ self-lubricating composites. Advanced Materials Research, Vols. 79-82, 2009, p. 1863-1866.
- [16] Li W., Zheng S. H., Ma S. Y., Ding H. Y., Jiao D., Cao B. Q. Study of surface modification of ZrO₂/SiO₂ nano composites with aluminum zirconium coupling agent. Asian Journal of Chemistry, Vol. 23, 2011, p. 705-708.
- [17] Gu C. X., Li Q. Z., Gu Z. M., Zhu G. Y. Study on application of CeO₂ and CaCO₃ nanoparticles in lubricating oils. Journal of Rare Earth, Vol. 26, 2008, p. 163-167.
- [18] Mangam V., Bhattacharya S., Das K., Das S. Friction and wear behavior of Cu-CeO₂ nano composite coatings synthesized by pulsed electrode position. Surface and Coatings Technology, Vol. 205, 2010, p. 801-805.
- [19] Jiao Da, et al. The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Applied Surface Science, Vol. 257, 2011, p. 5720-5725.
- [20] Prakash E., Kumar Siva, Kumar Muthu Experimental studies on vibration characteristics on ball bearing operated with copper oxide nano particle mixed lubricant. International Journal of Engineering and Technology, Vol. 5, 2013, p. 4127-4130.